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1  Introduction 

 

The basis of many finance analysis, such as portfolio selection, asset pricing and risk 

management, previously rested on the assumption of normal distribution. The popularity 

of this assumption in modelling financial market returns spanned several decades 

because of tractability and computational simplicity, among others. Also, it is supported 

by the Central Limit Theorem (CLT) and therefore offers the best approximation to the 

empirical distributions in samples of reasonable size (Mills & Markellos, 2011).  

 

The rationale behind this prevalent view was promoted by Bachelier (1964). It was set out 

as follows: If the log-price changes from transaction to transaction are independently 

and identically distributed with finite variance, and if the number of transactions is fairly 

uniformly distributed in time, then applying the central limit theorem (CLT), the return 

distribution over large intervals such as a day, a week, or a month approaches a 

Gaussian shape.  

 

However, overwhelming theoretical and empirical evidence has recently invalidated the 

normality assumption. Empirical analysis of asset return distribution has shown that such 

distributions, though unimodal and approximately symmetrical, are mainly characterized 

by heavy tails, high peakedness (excess kurtosis) and skewness (Rachev et al, 2005). The 

implication of this is that extreme values of returns are more likely than would be 

predicted by the normal distribution. In other words, Gaussian distribution tends to 

underestimate the weight of the extreme returns contained in the distribution tails 

(Longin, 2005). Mandelbrot (1963) was probably the first to emphasise this point. He 

vehemently rejected normality as distributional model for asset returns. Examining various 

time series on commodity returns and interest rates, he concluded that financial returns 

are better described by a non-normal stable distribution.  

 

An alternative class of non-Gaussian stable distributions, also known as stable Paretian or 

Pareto-Levy or Levy stable distributions, was first proposed by Mandelbrot (1963a; 1963b) 

to model the fat-tailed nature of stock returns. The most notable extension of his work is 

Fama (1965), which led to the stable Paretian hypothesis. Some extensions focused on 

other distributions capable of modelling fat tails, such as student t-distribution, and 

hyperbolic distributions. All these extensions have greatly contributed to understanding 

the distributional behaviour of asset returns. Other studies that have affirmed the usage 

of stable distributions in modelling financial or related data are Rachev & Mittnik (2000) 

and Kim et al (2011). 

 

Recently, Bekri & Kim (2014) investigated portfolio management in Islamic finance. The 

study provided empirical evidence that assets in Islamic finance exhibit asymmetry, 

heavy tails and volatility clustering. 

 

Empirical investigation of the tail behaviour of financial market returns distributions, 

assessment of how fat-tailed returns are and evaluation of the stability of the returns 

distributions across different regimes have received the attention of researchers because 

of the developments in statistics and econometrics. For instance, Koedijk & Kool (1992) 

used a nonparametric tail-index estimator based on extreme-value theory to shed light 

on some of the characteristics of the empirical distribution of black-market exchange-
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rate returns for seven East European currencies between 1955 and 1990. Other similar 

studies include Koedijk et al (1990), Hols & de Vries (1991) and Loretan & Phillips (1994). 

 

Empirical examination of the similarities between the left and right tails of return 

distribution has also been conducted. A typical example in this case is Jondeau & 

Rockinger (2003). The authors investigate whether the perception that the left tails are 

heavier than the right ones is due to clustering of extremes. The finding shows that, the 

left tail of the returns is similar to the right tail and concluded that volatility clustering 

cannot be held responsible for this perception.  

 

Following the above, what is the current state of knowledge about the behaviour of the 

Nigerian stock market returns? What is the shape of the distribution, Gaussian or non-

Gaussian? What is the tail shape characteristic? The need to update the existing 

knowledge about the tail characteristics or behaviour of financial market returns will 

continue to be of interest in finance literature on Nigeria. Consequently, the specific 

objective of this study is to determine the shape of the Nigerian ASI and analyze its tail 

characteristics. The paper examined the information in the tails of the distribution of the 

stock market returns. Precisely, it examined the left and right tail shapes of the empirical 

distributions of the returns. Given that stock returns are not Gaussian, the properties of the 

unconditional distribution are important, and distribution tails are particularly interesting. 

LeBaron (2008, page 2) gives the following reasons why measures of tail properties are 

important: 

 

First, for researchers calibrating to these features, they give them 

a quantitative target which is more challenging and interesting 

than simply getting non-normal return distributions. Second, the 

shape of the tail parameter gives us important information about 

the existence of higher moments in return series. Unstable, or 

non-existent, higher moments can cause problems for 

estimating other parameters, or various measures of risk. Third, 

estimates of tail shape can be used for better risk estimation, 

since they provide information on tail probabilities. Finally, tail 

shape also can connect various risk measures as in expected tail 

loss and VaR. 

 

The paper is planned as follows. After this introductory section, a brief review of literature 

on extreme value theory is conducted in section 2. In section 3, the methodology 

employed in the tail shape analysis is discussed while section 4 presents the analysis and 

the Monte Carlo experiment used to determine the appropriate number of tail 

observations for estimating the tail index. The summary and conclusion of the paper is 

given in section 5. 

  

2 Review of Literature 

 

According to Martin and Jan (2006), Extreme Value Theory (EVT) is a useful substitute to 

the traditional Value-at-Risk (VaR) method for measuring risk exposure. Although VaR has 

been established as a standard tool among financial institutions to depict the downside 

risk of a market portfolio, it has been shown by Jorion (1997) that due to risky market 
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factors, it only measures the maximum loss of the portfolio value over some period at 

some specific confidence level. Also the standard VaR method such as variance-

covariance method or historical simulation can fail when the return distribution is fat 

tailed. This problem is aggravated when long term VaR forecasts are desired. 

 

After the seminal work of Markowitz on portfolio theory, volatility has become an 

extremely important variable in finance, appearing regularly in models of asset pricing, 

portfolio theory, risk management, etc. (Mills & Markellos, 2011). Various measures of 

volatility have been developed and the most common is the unconditional standard 

deviation of the historical returns. The limitations of this method have led to other 

measures such as the semi-variance by Nawrocki (1999) and the absolute deviation by 

Granger and Ding (1995). 

 

In addition to the historical standard deviation, several extreme value estimators have 

been suggested in the literature in an effort to improve efficiency using information 

contained in the opening, closing, high and low prices during the trading day. For 

instance, Garman & Klass (1980) propose minimum variance unbiased extreme-value 

estimator. The integrated or realized variance non-parametric estimator has also 

become very popular over the past decade after a series of papers by various authors 

such as Barndorff-Nielsen et al (2004) and Anderson et al (2007).  

 

An alternative approach to measuring volatility is to incorporate it within a formal 

stochastic model for the time series itself. This is usually accomplished by allowing the 

variance (or conditional variance) of the process generating the time series to change 

either at certain discrete point in time or continuously. For instance, Harvey & Shephard 

(1996) and Jacquier et al (2004) have developed two different models which allow for 

correlation between the shocks in the mean and variance processes.  

 

In concluding this review, it is important to note that there are challenges in the 

implementation of extreme value theory. According to Younes (2000), these include the 

paucity of extreme data, problem of determining whether the series is “fat-tailed,” 

choosing the threshold or beginning of the tail, and choosing the methods of estimating 

the parameters. For these reasons, paying attention to the challenges above while 

investigating tail behavior is very important. 

  

3 Methodology 

 

3.1  Extreme Value Theory and the Tail Index Estimator 

  

Consider θ1, θ2,…,θn to be a stationary sequence of independent identical distribution 

(iid) All Share Index (ASI) with distribution function F(*). Define Maxn as the maximum of 

this sequence of indexes: Then, 

 

Maxn =max (θ1, θ2, … , θn).    (1) 

 

It may therefore be shown that the distribution function Fn(x) of Maxn for a large n 

converges towards the same limiting distribution H(x), independent of whether the ASI 

were generated by a Student-t or some stable distribution. As the competing distributions 
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are hence nested within the same limit law H(x), there is no need to specify or maintain 

hypothesis about the correct F(x). 

 

The limiting distribution H(x) is of the following form, with β > 0 and the tail index α = 1/ β: 

 

H(x) = 0, x < 0 

H(x) = exp (-x)-1/ β = exp(-x)- α, x ≥ 0 (2) 

 

Leadbetter et al. (1983) showed that the theory also holds in a situation where that 

assumption of independence for the ASI is inappropriate, as long as the dependency is 

not too strong. Likewise, for the family of symmetric stable Paretian distributions, the tail 

index α in equation (2) may be interpreted as the characteristic exponent of the stable 

distribution, which ranges between (0, 2). Approximately, the lower the value of α, the 

thicker are the tails of the distribution, ceteris paribus. Also, for the class of Student-t 

distributions, the tail index α in equation (2) is the number of degrees of freedom of the 

distribution, which ranges from 0 to ∞. 

 

Thus, the simple and efficient estimator of the tail index is given as: 

 

β̂ =  
1

α ̂
=

1

𝑚
∑ [𝑙𝑜𝑔θ(𝑛+1−𝑖) − 𝑙𝑜𝑔θ𝑛−𝑚]𝑚

𝑖=1     (3) 

 

Where n represents the total number of ASI observations and m is the number of tail 

observations used to estimate α. Equation (3) is based on Hill (1975) and Mason (1982) 

established that under some basic regularity condition, β̂ is a consistent estimator for β. 

Similarly, Goldie and Smith (1987) proved that (β̂ − 𝛽 )𝑚1/2 is asymptotically normal with 

mean 0 and variance β2. As a result, α ̂ is also asymptotically normal with mean α and 

variance 
α̂2

𝑚
, and asymptotic confidence intervals may be constructed to test specific 

hypotheses. The work of Koedijk et al (1990) established an empirical application of this 

estimator. 

 

From the expression in equation (3), the estimator uses only the positive tail (right tail) of 

ASI to estimate α and neglects the content of the large negative observations in the left 

(negative) tail. In order to affirm that the right and left tails have the same tail index, we 

combine the information in the right and left tails by obtaining the absolute values of the 

ASI, we then order the ASI and use equation (3) to obtain the estimator. By this, the 

precision of the tail index may, by all instances, be improved significantly. Thus, we use 

the Monte Carlo simulation to derive the number of tail observations to be used. The 

results of our simulation are presented in Section 4.2.  

 
3.2 Tail Shape Determination 

 

Let St be the stock market index at time t. Empirical work on the distribution of financial 

returns is usually based on log returns. The continuously compounded or log return from 

time t to time 𝑡 + ∆𝑡, 𝑟𝑡+∆𝑡 is then defined as:  

 

    𝑟𝑡,𝑡+∆𝑡 = 𝑙𝑜𝑔𝑆𝑡+∆𝑡 − 𝑙𝑜𝑔𝑆𝑡   (4) 
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To interpret the quantity in (4) as percentage returns, we simply multiplied it by 100. Since 

the horizon over which stock returns are calculated is daily,  ∆𝑡 can be set equal to 1. 

Therefore, dropping the first subscript, (4) can be written as:  

 

𝑟𝑡 = 𝑙𝑜𝑔𝑆𝑡 − 𝑙𝑜𝑔𝑆𝑡−1      (5) 

 

The log returns (5) can be additively aggregated over time.  

 

Varying approaches are used in characterising tail behaviour of return distributions (for 

example, Koedijk et al, 1990). But Loretan and Philips (1994) formalize all arguments 

concerning tail behaviour of return distribution by defining it to take the form: 

 

P( X > x ) =  (1 ( )) 0RC x x x      

P( X < -x ) =  (1 ( )) 0LC x x x    
,
 

 

Where C and γ (tail index) are parameters estimated using order statistics. ( )R x  and 

( )L x  are information sets about the right and left tails, respectively. 

 

Although several approaches have been developed to estimate tail index, the Hill’s 

estimator (Hill, 1975) is mostly adopted because it is simple and efficient. As shown in 

equation 3, above. 

 

 

3.3 Location Estimators 

 

Measures of location are very important in statistics. Apart from providing a summary 

account of the data, they tend to help better understand the data. The three Ms (mean, 

median and mode) appear to be the most common measures of location but the mode 

has received lesser attention because of its inability to elicit interesting information to 

researchers. The other two have been extensively used in practice and have been seen 

to complement each other. 

 

A less common pairwise estimator, known as the Hodges-Lehmann midpoint estimator 

(Hodges and Lehmann, 1963) is given below:  

 

  𝐻𝐿 = 𝑚𝑒𝑑{
𝑥𝑖+𝑥𝑗

2
; 𝑖 < 𝑗},      (6) 

 

Equation (6) has been shown to outperform the mean in terms of robustness (Gelade et 

al., 2015). But owing to its computational complexity, this estimator has not been 

extensively used. Although Gelade et al. (2015) developed STATA codes to cater for this 

estimator and even reduced its computational time using an efficient algorithm 

proposed by Johnson and Mizoguchi (1978), in this paper, an alternative R script capable 

of performing similar analysis was written for the computation of this particular estimator. 
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3.4 Scale Estimators 

The classical sample standard deviation (s = (∑
(X−X̅)2

n − 1

𝑛

𝑖=0
)

1

2

) has been the most popular 

of all scale estimators. It is a very efficient estimator of the population standard deviation 

σ when using Gaussian data but it lacks robustness like the mean.  

 

Although quantile-based estimators like the Median Absolute Deviation (𝑀𝐴𝐷 = 𝑏 ×

𝑚𝑒𝑑𝑖|𝑥𝑖 − 𝑥𝑗|, 𝑏 = 1.4826) and the Interquartile Range (𝐼𝑄𝑅 = 𝑑 × 𝑄0.75 −  𝑄0.25)  𝑑 =

0.7413, have been used as robust alternatives to estimating the standard deviation, they 

have been shown to exhibit one fault or the other (Gelade et al., 2015). A less known, 

difficult to use but rather robust and efficient scale estimator is the Qn statistic proposed 

by Rousseeuw and Croux (1993). This statistic  

 

  𝑄𝑛 = 𝑑 × (|𝑋𝑖 −  𝑋𝑗|; 𝑖 < 𝑗)         (7) 

 

Outperforms the IQR and MAD in terms of robustness and has been shown to be 

consistent for Gaussian data as well. Although it can be easily implemented when the 

data to be used is small in size, it can be time-consuming and computationally complex 

for very large data set. An R script was also written for the computation of this estimator.  

 

 

3.5 Skewness Estimators 

 

The most commonly used estimator is the Fisher estimator (γ =
1

𝑛
∑ {

𝑥𝑖− 𝑥𝑗

𝑠
}

3
𝑛
𝑖=1 ) but because 

it is an estimator that relies on the mean and standard deviation, it shares their demerits. 

It performs poorly in the presence of extreme values because of its non-resistance to 

outliers. Other skewness-based estimators, such as 
𝑥̅− 𝑚𝑜𝑑𝑒

𝑠
 and 

𝑥̅− 𝑄0.5

𝑠
 , have been 

proposed by Pearson (1916) which still share the same demerits as the Fisher’s skewness.  

 

The quantile-based estimator of skewness first proposed by Yule and Kendall (1968) and 

later generalized by Hinkley (1975) is a very much robust alternative. The estimator, which 

is given as: 

 

 𝑆𝐾𝑝 =
(𝑄1−𝑝− 𝑄0.5)− (𝑄0.5− 𝑄𝑝)

𝑄1−𝑝− 𝑄𝑝
 𝑤ℎ𝑒𝑟𝑒 0 < 𝑝 < 0.5      (8) 

 

is very robust to outliers if p is set to 0.25. Another alternative robust SK operator is called 

the medcouple (MC) proposed by Brys, Hubert and Struf (2004). It is a pairwise-based 

estimator and replaces all quantile points in (8) with actual data points. It is given as 

 

 𝑀𝐶 = 𝑚𝑒𝑑𝑥(𝑖) ≤𝑄0.5 ≤𝑥(𝑗)
ℎ(𝑥(𝑖), 𝑥(𝑗)) for all xi  and xi ≠ xj   (9) 

 

The kernel function h is given by  
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  ℎ(𝑥(𝑖), 𝑥(𝑗)) =  
(𝑥(𝑗)− 𝑄0.5)− (𝑄0.5− 𝑥(𝑖))

𝑥(𝑗)− 𝑥(𝑖)
         (10) 

3.6 Data, Sources and Description 

 

The data used in this study was the daily All Share Index of the Nigerian Stock Exchange 

from 3rd January, 2006 to 18th July, 2016. All days without trading were omitted, thus 

leaving us with data for days with trading activities. In all, 2,599 observations were used. 

The entire dataset was downloaded from the official website of the Nigerian Stock 

Exchange (www.nse.com.ng).  

 

4  Results and Analysis 

 

4.1 Preliminary Analysis 

 

4.1.1 Descriptive Account of ASI and its Returns 

 

This section gives an overview and descriptive account of the data in comparison to 

known properties of the normal distribution. The figure below presents a line plot for the 

series. The plot shows a rise in the first 500 observations followed by a decline but an 

upward trend is noticed from the 1000th observation. Figure 2 shows the line plot for returns 

(computed based on equation 5 above); though the series can be said to centre on 0, 

the volatility of the series is high with cases of extreme values.  

 

 

 
Figure 1: The Nigerian All Share Index between January 2006 and July 2016 
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Figure 2: Returns for Nigeria All Share Index between January 2006 and July 2016 

 

 

The histogram and density plot (see Figure 3a) for returns shows that the empirical return 

distribution of ASI is highly peaked compared to the theoretical normal distribution with 

the same mean and standard deviation. And Figure 3b (box plot) also revealed the 

volatilities in ASI. Also, the tail for return distribution is thicker than that of the normal 

distribution and it has excess kurtosis. These features depict heavy-tailed distribution. The 

Normal QQ-Plot (Figure 4) below further justifies this conclusion because the computed 

theoretical quantiles deviate from the line at both ends. 
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Figure 3a: Returns Histogram and Density Plot for Return Distribution 

 

 

 

 
Figure 3b: Returns Histogram and Box Plot for Return Distribution 
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Figure 4: QQ-Plot for Return Distribution 

 

To give a proper descriptive account of ASI returns, for each of location, scale, and 

skewness estimators, classical, quantile-based and pairwise-based approaches were 

used. This was done in order to obtain robust estimates against outliers.  

 

4.1.2 Location Estimators of Returns of ASI 

 

In location analysis, the mean is very efficient with Gaussian data but unreliable in the 

presence of outlier. That is, mean is affected by extreme values, hence meaningless with 

highly asymmetric data. However, when data is non-Gaussian, HL is more efficient. As 

shown in Table 1, all computed location estimators show that the distribution of returns of 

ASI is centred on zero (0).  

 

Table 1: Location Estimates for ASI Returns 

Estimator Type Estimate 

Mean Classical 5.570e-06 

Median Quantile-based -3.250e-06 

HL Pairwise -8.3e-05 
  Source: Computed by the Authors.  HL: Hodges-Lehmann estimator (eq. 6) 
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4.1.3 Scale Estimators of Returns of ASI   

 

In estimating the scale parameter, the classical estimator is the standard deviation (SD) 

which is the most efficient estimator when the data is Gaussian, though it is not robust to 

outliers. However, when dealing with non Gaussian series like ASI, the alternative robust 

estimators with efficiency and robustness properties are interquartile range (IQR) and Qn 

Statistics of Rousseeuw and Croux (1993). The results of these statistics are shown in Table 

2. Each of the scale estimators shows that the spread of ASI returns is not large and is 

highly clustered around the central value.  

 

Table 2: Scale Estimates for ASI Returns 

Estimator Type Estimate 

S Classical 0.011853 

IQR Quantile-based 0.0078837 

Qn Pairwise 0.0122049 

  Source: Computed by the authors. Qn: Rousseeuw-Croux Scale Estimator (eq. 7) 

 
4.1.4 Skewness Estimators of Returns of ASI 

 

The widely used skewness estimator is the Fishers’ estimator. However, it has no resistance 

to outliers since it relies on mean and standard deviation (SD). Thus, SK0.25 and MedCouple 

(MC) are the alternative skewness estimators to Fisher. In this analysis, the three estimators 

provide the same information about the direction of the tail of the distribution of the ASI 

index. The results in Table 3 showed that ASI is negatively skewed implying that the longest 

tail is to the left.  

 

Table 3: Skewness Estimates for ASI Returns 

Estimator Type Estimate 

Fisher Classical -0.34855 

SK0.25 Quantile based -0.003370 

MC Pairwise -0.061583 
  Source: Computed by the authors     MC: Medcouple skewness estimator (eq. 9) 

 
4.1.5 Measuring Fatness of Tail Distribution 

 

The Pareto Tail Index method is mostly used to measure the fatness of tail of return 

distributions. This method, however, has a major demerit because it is a “curve fitting” 

approach, where you start by assuming a particular distribution, then see which 

parameter gives the best fit. 

 

For this study, a comparison between the Mean Absolute Deviation (MAD) and Standard 

Deviation (SD) in terms of ratio to gauge fatness of tail was employed. The MAD is without 

squares unlike the standard deviation, which makes it less volatile to outliers. Also, the 

MAD/SD ratio cannot exceed 1. Therefore, the closer the ratio is to 1, the fatter the tails 

of the distribution in question. The figures below show the MAD/SD ratio for the return 
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distribution of ASI compared to a standard normal distribution and the student t 

distribution. The first plot was generated using n = 200 (Figure 5), then n = 300 (Figure 6) 

and n = 500 (Figure 7). Visual inspection of the plots below shows that, at any degrees of 

freedom, for any sample size, the MAD/SD ratio for the return distribution of ASI does not 

exceed 0.7, while that of the normal distribution is consistently above 0.7. Precisely, the 

difference between the MAD/SD ratio of the normal distribution and ASI returns 

distribution is approximately 1.5. This further corroborates the graphical results indicating 

the fatness of the tails. The phenomenon of fat tail implies that there is a probability, which 

may be small, that an investment will move beyond three standard deviations. This is 

often referred to in literature as the concept of tail risk. For a normal distribution, the 

probability that returns will move between the mean and three standard deviations, 

either positively or negatively, is approximately 99.97%. The implication of this is that the 

probability of returns moving more than three standard deviations beyond the mean is 

0.03%. However, the MAD/SD ratio for student t distribution tends to converge towards 

the MAD/SD ratio for ASI; and the degrees of freedom for the MAD/SD ratio for both the 

student t and ASI converges between 1 and 3. This is, however, crude and might not be 

a very accurate estimate of tail exponent; thus, the formalization of tail behaviour as 

suggested by Loretan and Philips (1994) using the Hill’s estimator was exploited. 

 

 
Figure 5: MAD/SD Ratio using n=200 
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Figure 6: MAD/SD Ratio using n=300 

 

 
Figure 7: MAD/SD Ratio using n=500 
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4.2 Monte Carlo Experiment: Choosing the Optimal M Level  

 

Although the MAD/SD ratio gave a rough estimate of the tail index, a Monte Carlo 

experiment was carried out to obtain the optimal m level to compute the tail index using 

the Hill’s estimator. The Monte Carlo simulation experiment is very much like that carried 

out by Koedijk and de Vries (1990) but it is much more precise and direct since the 

MAD/SD ratio has given an idea of where the tail index will possibly lie. Unlike Koedijk and 

de Vries (1990), the scope of the Monte Carlo experiment was limited to simulating from 

t distributions with degrees of freedom 1, 2 and 3 and an upper bound of 200 was placed 

on m since the value of m must not exceed 0.1T, where T is the length of the whole series 

(Loretan and Philips, 1994). The results of the optimal m level resulting from the Monte 

Carlo simulation, estimated tail index and MSE are reported in Table 4. 

 

Minimum MSE for tail index occurs at m = 13 for α = 1; 189 for α = 2; and 8 for α = 3 for right 

tail. For the left tail, minimum MSE values were obtained for m = 140 for α = 1; 16 for α = 2; 

and 57 for α = 3. One important point to note here is that across the right tail α = 2 possess 

the smallest MSE, while α = 1 has the smallest MSE value for the left tail. 

 

 
Table 4: Optimal Choice of m through Monte Carlo  

Degrees of freedom α = 1 α = 2 α = 3 

 

Right tail only 

Optimal m = 13 m = 189 m = 8 

Tail Index 1.002786 2.00041 2.948918 

MSE 489836e-07 1.186523e-08 0.000185 

 

Left tail only 

Optimal m = 140 m = 16 m = 57 

Tail Index 1.000119 1.802584 2.999196 

MSE 9.974349e-10 0.002755816 4.568261e-08 

Source: Computed by the authors. Tail Index: Hill Estimator (eq. `3). Key: MSE – Mean Square Errors  

 

 
4.3 Discussion of Results 

 

Literature provides alternative criteria such as minimum variance and smallest bias for 

choosing the appropriate tail index (α, degrees of freedom in this case) but we prefer to 

use the smallest Mean Square Error (MSE) associated with the optimal m levels in 

computing information about the left and right tails based on the Hill’s estimator. The use 

of MSE is justified because it measures the differences between the observed and 

estimated values. More importantly, MSE is the second moment (about the origin) of the 

error, and thus incorporates both the variance of the estimator and its bias. For an 

unbiased estimator, the MSE is always the variance of the estimator. 

 

Table 4 indicates the appropriate tail index was α = 1 for the left tail and α = 2 for the 

right, since the MSE was significantly lower than others. This was expected because the 

MAD/SD plots indicated that the tail index is in the neighbourhood of 1 and 3, since the 
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Student-t and the returns of ASI intersected in this region. Also, the methodology 

employed appears to be robust to choice of m as standard errors of estimates for the tail 

indices estimated are very small at any level of m except m = 1 for both left and right 

tails.  

 

These findings point to the fact that returns from the ASI cannot be modelled using the 

normal distribution despite it being centred around zero. Its tail was fatter than that of the 

normal distribution and it had a tail index α = 1 and α = 2 for the left and right tails, 

respectively. The implication of this result is that ASI returns have kurtosis that exceeds that 

of normal distribution, indicating the occurrence of returns on investment beyond what 

could be expected. More precisely, unlike the predictions of the normal distribution, the 

results show that the stock market has experienced returns that exceeded three standard 

deviations beyond the mean in more than 0.03% of the observations.  

 

Comparatively, the Nigerian All Share Index returns had tail indices lying in the region 1 ≤ 

α ≤ 2, which implies that all moments around it are finite compared to the findings of 

Jansen and de Vries (1991), Loretan and Phillips (1994) and de Haan et al. (1994), who all 

estimated the tail indices for US stock and bond market returns as lying in the region 2 < 

α < 4. However, the findings of Koedijk et al (1990), Koedijk, Stork and de Vries (1990), Hols 

and de Vries (1991), and Koedjik and Kool (1992), who all estimated the tail indices of 

foreign exchange rate returns in European black market as falling in the region 1 ≤ α ≤ 2. 

Similarly, recent study on US daily stock returns by LeBaron (2008) found the scaling 

exponents to be around 3 and to be generally stable over time and across positive and 

negative tails. Others such as Bekri and Kim (2014) provided similar empirical evidence to 

show that Islamic finance assets returns showed asymmetry, heavy-tail and volatility 

clustering and therefore suggested the use of stable distributions and the student’s t 

related copulas for portfolio modelling.  

 

5  Summary and Conclusion 

 

This paper reviewed the returns of the ASI, explored and obtained its descriptive 

properties and described its tail properties by estimating its tail index based on extreme 

value theory. A ratio of the Mean Absolute Deviation and Standard Deviation was used 

to characterise tail properties of the return distribution of ASI, the normal distribution and 

the student t distribution across several degrees of freedom, which helped pinpoint 

where the tail index of the return distribution of ASI could possibly lie. The Hill’s estimator 

was employed in obtaining the tail index but a Monte Carlo simulation approach was 

used in obtaining the major issue about the Hill’s estimator (m). 

 

The results suggested that the return distribution of ASI was negative but the kurtosis value 

showed that the data was highly peaked. The MAD/SD ratio indicated a student t 

distribution with degrees of freedom between 1 and 2, both inclusive. This result was 

further confirmed by the Monte Carlo simulation carried out to obtain the optimal level 

of m in the Hills estimator, which helped confirm that the appropriate tail indices for left 

and right tails of the return series for ASI are 1 and 2, respectively.  

 

The crux of this paper is to establish the impact of tails distribution in the returns of the 

Nigerian ASI. As supported by our results, the ASI is not Gaussian. Therefore, investors 
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should understand that asymmetry in stock market returns is possible as returns are based 

on the tail distribution. Indeed, this finding is a major characteristic of stock market returns. 

According to LeBaron and Samanta (2004), equity market crashes or booms are extreme 

realizations of the underlying return distribution. Hence, it is important for the market 

operators to continuously monitor the tail behaviour where crashes and booms are 

generally reflected.  
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